Showing posts with label surds. Show all posts
Showing posts with label surds. Show all posts

Monday, 18 August 2008

Beware of Surds

Surds are right at the start of C1.


They are easy to forget.

As I found out tonight, trying a C1 practice paper.

Surds are basically this. They are an exact representation of irrational numbers, where a fraction or a decimal will not do. Normally we have rational numbers, like 1, 2, 3.5, 4.54, and so on. These numbers can be expressed as a fraction or as a decimal. But sometimes we get numbers like √2 or π which would go on forever if we tried to express them as a decimal (3.14159265 is only the start of π) so a decimal or a fraction would only ever give us an approximation.

1.41.... will never really describe √2 exactly, because it has an infinite number of digits after the decimal point. Apparently there is a proof of this but you don't need to prove it for C1.

So we leave these numbers expressed as a square root, or combination of square root and integer or fraction, and we call these surds (because 3 or 5 times the irrational square root of 2 will be irrational itself, usually). They enable us to do exact calculations of numbers which cannot be represented exactly as fractions or decimals.

There are a few rules of surds.

1) You can only add or subtract like surds. ie 3√7 - 2√7 = √7

2) You can multiply surds but there are a couple of rules to remember:

√5 x √6 = √30

3 x √5 = 3√5

5√3 x √4 = 5√12

3) Sometimes a surd will reveal itself to be a rational number: watch out for this:

√3 x √3 = 3

3√4 x 2√4 = 6√16 = 24

4) surds multiply out of brackets just like anything else does.

5)The trickiest thing about surds is fractions with a surd as a denominator. You need to get rid of the surd.

If you think about it, there is a way to make rational numbers out of surds that uses a rule of brackets. (a-b)(a+b) always gives you a2-b2.

So if you have 3+√5 as the denominator, multiply it by 3-√5 and you rationalise the denominator into 9-5 = 4.

Of course whatever you times the denominator by you need to times the numerator by.

This means you will often end up with your answer being a surd, but you will have eliminated the irrational denominator and so you will have been able to simplify your fraction.


I know I'm meant to be doing a series on geometry of the line but I keep getting distracted...